The Time-Evolution of Property Casualty Insurance Liabilities

Stephen Mildenhall

IMA, Minneapolis, MN January 31, 2003

Overview

- 1. Coverages, accident years
- 2. Report and settlement lags
- 3. Paid loss process and desired decomposition
- 4. Aggregate loss model
- 5. Poisson decomposition
- 6. Contagion
- 7. Negative multinomial descomposition

- 8. Average costs vs settlement lag
- 9. Markov model of claim complexity
- 10. Combined results

Jan 31,2000 IMA Tall mercie. 1. Coverage 2. Accident Tead 3. Report + Settle mat Lags y. Paid los process 5. Derired Decomposition b. Aggregate Loc Model 7. Roirson de composition 8. Contragion & Negative Binomial distribution 9. Negative multinomial distribution 10. Average cost vs settlement Lag 11. Martion model of claim complexity 12. Combined frequency/severity model.

1.

1. Coverages/Scene > Hinne, anto, WC, GL, AL, avcraft, terraiom ... CAS J' SOA > Not lite, pensions ~ 3000 ~15000 membro 2. Accident Y180 13, Report, Settlement Lags Accident Year view: gather all financial implications of loss events which occur in a given year, the "accident" year Multiple policies, multiple classis for me policy. Accidet 3 time 41/02 12/31/02 Accident ++++----Anilt Ast-c Scillement Fenort Date Date Hopefully liab discharged Insurer aware onthis he sa ner ot an open claim. othay bell dani Will record a case reserve histoty

Reasons for lags

Settlement: Reparknp: · Generally not an isree · Discovery - Costestiniation and · Days to week -Pipeline damage evaluation · Latent Hazards such on · Remediation aspectos, pollution became . Coust proceedings mak of an true the payne claim you . Here will typically ignore male e. Kocurrence forms in some lines accident date is not well defined (susety med anal) and every us a report date approach Accounting : required to post adequate reserves for lenour and unknown claims reported inreputed Bull Revenue care serence (IBNR) Adjustors mean median mode ** "Case development" Reserving is #1 activity of P/Cachanier

3

4. The faid loss Process. Dr = losses paid at time t Ct = Z Pg = Cumulative lasses through set time t CL---- Cumulative paidlosse 36 - Ct iv a non-decreasing (no sal sub) process - CE converga in finite trie (I hope!) (+ -> 11 on t-> 00 q.s. - U = ultimate loss modes - Reserves, RE, are best estimate of un paid liability micrealing - Introduce probability space (S.F. Duth an filhalter Ft on F; Ft = intornation available at twiet, then, by definition $R_t = E(U|q_t) - C_t$

5 - Ut := E(U) (4) = and estimate of ultimate loses Ut = RE+CE, ·· Up is a marbigale Assumption : claum settle with one payment when they close; that are no partial payments - The for all lines except WC - Significant parties of the market So have a total picture of Evolution of Insurance liabilities: UE-JU RE > time Dt is claunic paid in the till & rathe 5. Desired decomposition is $U = \sum_{t > 0} D_t$ that CE

6. Aggregate Loss Model - Aduarie, already have a good model for U $U = X_1 + \cdots + X_N$ - where N = counting distribution giving the number of classic Frequency: Poisson, nB, PIG, ... Xi ~ id iv giving the reverity of each dawn. reveity: Lognormal, pareto, empirical - Claim split and not a time split. - Very tractable decomposition because of MCF idulity $M_X(\xi) = E(e^{SX})$ $M_V(g) = E(e^{\xi N})$ $-M_{u}[5] = E(e^{5(X_{1}+...+X_{N})})$ = E (E (e t(x, + x N) (N)) X: iid $= E \left(M_{\chi}(\varsigma)^{N} \right)$ $M_{n}(S) = M_{N} (lig M_{X}(S))$ - Candetermine all moments of aggregate from moments OF X, N - Can use FFTY to compute aggs there X's discrete and EON) ~100. F(U) = E(N) E(X), Var(U) = E(N) Var(X) + Var(U) E(X)- claim-by-claim view as opposed to an evolution of over time view; but so nice we want to be consistent up approach.

7. Poisson Decomposition of the Aggregate Loss Model. • $N \sim Poisson(n)$ $M_N(4) = enp(n(e^3-1))$ · Suppose that TE of claims are reported at hunet. $\sum \pi_{t} = 1$ · Define Dt to be compound Bissin with frequency component ~ Poisson (TTER) and same severity component X. $M_{0,t} (i) = TT exp (\pi_{en} (M_{x}(5)-i))$ = exp (n (Z. The Mx (4) - 1)) - Mu(5) =) Have a decomposition $\mathcal{U} = \mathcal{D}_1 + \mathcal{D}_2 + \cdots$ exactly a we wanted int - Di indep Cloisions! - Canadjust K's to K' and you get a similar regult into mixtures ;

IF F; = distribution function of Li then $CP\left[Freq = lowon(\pi; n) \right]$ fev = F; $CP \left[\begin{array}{c} Frq = loisron(n) \\ fer = mixture \left[ti, F: \right] \\ inder$ (all classis cort \$1; L E 1 Example only viterested in frequency uncertainty) U ~ Poisson (n) P = 1 $I = \begin{cases} I \\ 0 \\ 2 \end{cases}$ Di = loiston (pn) I=1 =) rettles at Pr = fiison (gn) time 1 Can write $D_1 = I_1 + \cdots + I_N$ $D_2 = (-I_1) + \cdots + (1 - I_N) = N - D_1$ then D, + Dr = N: Di 's are independent. [per MGF argument! Also cany to compute they are incorrelated ... condition on N.] $E(D_1) = ny \quad E(D_2) = ng$ $E(0, D_2) = FE((I_1 + \dots + I_N)((I - J_1) + \dots + (L - I_N)(N))$ $= E\left(\sum_{i=1}^{N} E(I_i)E(I_i-I_j)\right) = E\left(N^2 - N\right)P_2$ Var = E(N2)-E(N)2 = nipg = Eunio2) = Uncorrelated. 1 = E(N)#_12 $=) P(M) = n^2 m$

and the second second second

8. What will a chally happen? Contagion & the Nep Bin or. Population of insureds is exposed to common modes: - Level of economic activity - Gas prices (anto) - Weather moustorms etc. - Fads and bends (dot con boom/bust, Dto) - Inflation, CPI, drup costs ... so expected daim count n for population is really a function n = Al(w), west describing state of world. Many of the common shocks are multiplicative. E.g. Snow makes ante accidents x% mare likely. So a model $N(\omega) = c(\omega) n$; any E(c) = 1s = E(N) = 0is not mreasonable to describe expected counts for the Coming period. Unbiased actuarial estimate is per n claims, but in reality will see date from a Poision (c(w) n) rathe than a forson (n). This leads to correlation between D'S: $E(0, 0_2) = \bigoplus E(0, 0_2) = f(c) dc$ = $\int (cn)^2 pq f(c) dc$ = $n^2 pq E(c^2)$ $\int \sigma \cos(D_1, D_2) = E(D_1, D_2) - E(D_1)E(D_2) = n^2 \rho Var(c) \neq 0.$

10

IF ENT The variable à is sometimes called contagion. mean I and variance a then the functioned dist of for 10 000 No becomes a regative bisonial distribution. with no mornahan Var(N) = n(itcn), > n E (W) = n Puisson. Thus compand NB's are more tilely than C Poirrons. one timesb abletoestmate e ->goto. Ro.3son 9. Negative Multinamial Distribution Dinomial (Kip) Ptg=1 POBION Negative Binimial (Q - P = 1)(Q - P = 5) - kMN(f) = (q + pet)Kkpg « mean LP Var = main mean hra > hr Variance Q=1+P Debue DE = LI+····+LNE NE~ NB(TEP, k) (K=1/2) Define multivariate distribution U~NB(P, h) proget EDE #4 (MGFes) J-k Mon or (S. S.) = (Q - Z Prix ML (Si)) malgual marginals CNBis MD:= MD: (0..., \$:, 0...) = (Q-ZP; - PiM/S:)/ML/0)=1 $U = D_1 + D_2 + \cdots$ $M_{n}(\xi) = (Q - Z P_{n}, M_{L}(\xi))^{-k}$ (4 - PML(5))-4 so the aggregate in a CNB distabution. Have a time decomposition of an agregate where (ii) Sum is CNB = dist of 4 ... what you want

11 Nose that the dist" is very different to a sum of D's under indep, which would have MGF TT (1+πεP - πεPML19]-4 RETURE NEKT STRAS · Can other common counting dista's be used ? Eg PIG? - Need to look at fem of MGF. Q = 1 + Pq=1-p (gtpec)4 (Q - (er)-k 48 kp ksp < men kPQ > mea

10-12 Marcis Model of Claim Complexity - Have arruned that severity, L. Divdependet of settlement lag. - In fact, very strong evidence from many LOB's that E(L) increases up settlement lag I Need to model Lo for lorry cloning at time to. - Infact settlement lag is really a proxy the clauin complexity (eg BI VS PD, lawyer involved, severity if aijung ...) - Markov model, damis transition between one or states and shally close provider good fit to date in many case, - Postulate that severity LE, Y & complexity t = sittlent alag is really Lr. Effect of t reflects A in mix between cr is quick to close, low & claums are eliminated from the system. closed 1 period (month 9.6 0.2 0.1 0.1 0.2 0.2 0.2 0.4 Transitier Matrix 0.05 0.05 0.8 claws stay clard All classic start into at 1 0.2 0.1 0.1 0.2 0.4 J.2 005 0.1 p.8 V:

	E(occ) 1.164 Opening distribution v ₀ V 0.1146 v ₀ V^2 0.0325 0.0032 0.0030 0.0031	T=(I-V) ⁻¹	V V
0.000652005 0.000448873 0.000294367 0.000294367 0.000212915 0.0001212915 0.000145713 0.000145713 0.000145713 0.000145713 0.0001455713 0.0001455713 0.0001455713 0.0001455713 0.0001455713 0.0001455713 0.10004155713 0.10004155713 0.10004155713 0.10004155713	1.16454293 istribution 1 0.114656343 0.032568604 0.003078716 0.001220812	1.164542931 0.094201646 0.048143566 Values -0.0008408 0.277763893 0.855745061	One period transition matrix 1 V 0.115 0.064 0.000 0.000 0.000 0.000 0.033471437 Numerical
0.005819 0.004703 0.003948 0.003357 0.002867 0.002452 0.002452 0.002452 0.002452 0.001795 0.001795 0.001314 0.001314 0.001314 0.0001314 0.000962 0.000824	0.482513 0 0.302109 0.030864 0.013499 0.007964	0.482513 1.297263 0.662991 0 0	2 0.302 0.171 0.078 0.000 0.507772 0.507772
0.044977921 0.038532568 0.028230903 0.024159376 0.02674522 0.017692191 0.017692191 0.015140025 0.01108704 0.009487681 0.009487681 0.006947805 0.005945567 0.005945567	0.482513 0.618309319 2.26536559 0.302109 0.053206322 0.090394 0.071532215 0.030864 0.068426089 0.013499 0.066058737 0.007964 0.052379326	0.618309455 0.604861879 6.854114051 -0.48599625 0.873095895 -0.03887415	3 0.053 0.067 0.847 0.847 0.000 0.458756743
		Total 2.26536574 1.99632689 7.56524905 7.56524905 -0.3629378 -0.9207974 0.14285758	Closed 0.530028 0.698 0.075 1.000 = rescaled e
	 v₀ w v₀ v∞ v₀ v^2w	0.010211 0.117708 0.992996	Vector corre
22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 8 7 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cls cx Dist n \ Cls cx 2 3 4 5 6	TW [sponding t
0.000345581 0.000237915 0.000187536 0.000156023 0.000132277 0.000112851 9.64761E-05 8.25324E-05 5.17122E-05 5.17122E-05 3.78686E-05 3.24059E-05 2.77312E-05	0.617240871 1 0.530028439 0.060771123 0.0050594286 0.0050594286 0.0001631807 0.000647065	0.617240872 0.049929551 0.025517459 0.617240872	Slosed 0.530028 I 1 0.698 0 0.075 1 1.000 = rescaled evector corresponding to largest evalue
0.004059 0.003281 0.002754 0.002342 0.00171 0.00171 0.001252 0.0011252 0.0011252 0.001071 0.0000917 0.0000917 0.0000784 0.0000574	0.336569 2 0 0.210731 0.063053 0.021529 0.009416 0.005555	x 0.33657 0.462459 0.33657 0.33657	0 - 0
0.003359989 0.002878502 0.002464154 0.002108935 0.00180478 0.00154445 0.001321661 0.001321661 0.001131006 0.0001321661 0.0001321651 0.000967854 0.0000867854 0.000666517 0.0006519024 0.0000519024 0.0000519024	0.04618961 3 0.003974676 0.005343677 0.00511164 0.004523924 0.004523924	0.04618962 0.045185045 0.512023426 0.04618962	- 0 0

0.075	0	0
	0.698	0
	0	0.530

	0.048851	U=W ¹ VW 0.114656	
0 0.729118	51 0.1708	56 0.397585	
0.847211	0.007216	0.007499	

WC -0.257592 -0.192367 0.005412	0.07418	0.010672	-0.002904 0.010672	
0 257502 0 102267	0.000412	0.192001	0 600014	
	0 005410	-0 102267	-0 222200	WC

0 400707	0000000	
211100.0	0.//9491	1.14/438
01110	0 110 101	4 1 1 1 1 0 0
0.00077	0.20070	0.100100
0 033471	0 23346	-0 73010A
		000100
	ctors	Scaled Evectors
0.01710	0.010012	0.00000 0.010012
0 07478	0 0106/2	-0 002904

-																					
0.033471	0.033471	0.033471	0.033471	0.033472	0.033472	0.033473	0.033476	0.033485	0.033514	0.033601	0.03387	0.034694	0.037192	0.044507	0.063968	0.104795	0.159604	0.201524	0.220603	-1	Conditional Distribution by cx 1 2 3
0.507772	0.507772	0.507772	0.507772	0.507772	0.507772	0.507774	0.507778	0.50779	0.507829	0.507948	0.508313	0.509434	0.512827	0.522765	0.549207	0.604677	0.679145	0.736092	0.764968	0	l Distributi 2
0.458757	0.458757	0.458757	0.458757	0.458756	0.458756	0.458753	0.458746	0.458725	0.458658	0.458451	0.457817	0.455872	0.449981	0.432728	0.386825	0.290528	0.161251	0.062383	0.014428	0	on by cx 3

21

B

IMA Example

$$V = submatrix of full transition matrix corresp to
open six 's only.
Following facto within & early to verify:
(1) $T = (I - V)^{-1}$ is the mean occupancy time is each
as prior to close
If Eq routing is at 1, $T = time to dore$

$$E(T) = \sum_{i} trian triangle for the following to the end of the end of$$$$

Use this expression to determine weights of Ly's to use in each LE. Lt : which mixture of Ly's where with are puperficient to the row of (*). ("conditional dirt by cx | T=t) (iii) Asymptotic mix of davins by cx is given by scaling r.W. reigenvector of V comesponding to lagert evalue. r= now (left) => Eventually reventy stops changing, and asymptotic distribution is independent of opening as distribution. IF $\hat{v}_n = v_0 V^n$ then $\hat{v}_n \to cvector$ $II v_0 V^n II acroaiated up largest$ evalue of V. $\hat{U}_{n}V = U_{0}V^{n+1} \geq U_{0}V^{n+1} || V_{0}V^{n+1} || || V_{0}V^{n+1} || || V_{0}V^{n+1} ||$ = Jati. An ; assume V is diag (evals), Vⁿ = diag (evalⁿ) and largert dominates. Pate is a cauchy requesce. We are considering volaw so if VW = WU vola W = vola and result follows. -CE-